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STATISTICAL PROPERTIES OF ALLOCATION AVERAGES

BACKGROUND AND PURPOSE

In an earlier paper, Brogden-L' established that estimates of Job
performance, if derived from a battery of predictor variables according
to least squares analysis under a model for linear regression, will
place men in jobs in the most efficient way possible for the given
predictors. For an optimal assignment based on such performance esti-
mates for an infinite number of individuals, the average performance
over the jobs to which men are assigned, if computed from the least
squares performance estimates, will equal the average performance after
assignment computed directly from measures of actual performance.

.. The purpose of this paper is to describe a simulation experiment
which was performed to verify empirically Brogden's result concerning
the unbiased nature of allocation averages. The theoretical proof for
equality of allocation averages, computed from measures of actual per-
formance and from least squares estimates of this performance, requires
that optimal assignment be performed over least squares performance
estimates for an infinite number of individuals. In the many simulation
experiments conducted in BESRL's Statistical Research and Analysis Divi-
sion, the allocation average computed from performance estimates, rather
than from actual performance values, is often the basic statistic from
which other experimental results are evaluated. The number of observa-
tions on which these results are based is, however, far from infinite.
There was thus need to demonstrate that the two kinds of allocation
average remain essentially equal when based on relatively small numbers
of observations, as is typical of actual experiments. -

It is conceivable that 1) when the number of observations, n, is
small, allocation averages based on least squares estimates of per-
formance are biased relative to allocation averages representative of
measures of actual performance; 2) this bias, if it exists, occurs in
a certain direction--allocation averages based on the estimates may be
consistently larger than averages based on performance values for com-
parable numbers of observations; and 3) the size of this bias changes
as a function of the number of observations. If any of these conceivable
effects do in fact exist, then any experimental results previously
obtained which involve optimal assignment of performance estimates and
the allocation average statistic should be examined, and future experi-
ments which involve the allocation average statistic will have to be
corrected for the effect of the number of observations.

l-Brogden, H. E. Least squares estimates and optimal classification.
Psychometrika. 20: 3, 1955.

__ I---



Using notation similar to Brogden's, tU~ result which needs to be
verified experimentally is

n z~jfj A M ~ 1 lt:J

as n changes from small to large:

y represents the performance of individual i In job j

l -represents the least squares estimate of job performance

a ijrepresents an element of any allocation matrix A with n rows

(corresponding to individuals) and m columns (corresponding

to jobs). When individual I is assigned to job A, a ij -1

otherwise, ai - 0. Each individual is assigned to one job;

I-00.0s aIj- 1; the number of Individuals required for each

job Is q and z a i - qJ.1 The sum of -the quotas is., of

course, the total number of individuals: Iqj - n. An
Jinl

additional requirement on the allocation matrix is that the

elements be constructed solely with respect to thelleast squares

performance, estimates.

a represents an element of a particular allocation matrix1

constructed so that

n rn]

That Is, for a given got of perforuance lestietes, 2 .

is the optimal allocation'saim in the a". that no other arrangement

of elements In to nder condition that the requireemente an any A :arek

satisfied, will yield a higher sus
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Elements of the optimal allocation matrix A are constructed from

a met of constants kj, J - 1,2,...,m, such that each individual i is

assigned to the Job J for which (91i + kj) is highest; i.e., iJ is

set to 1. Thus, by definition,

fl M n M

or, equivalently,

U fl U 11

~~~ k4~j~, + q) k ,a~ + kjq)

since

n n
' IJS =  

1 J = '

Therefore,

n M ni m

L Yjj J 2 .= jaij

n M n M

To prove equation (1), that Y j~ j = t as n ,

Broaden considers the n individuals as being divided into subsets of

individuals that have "identical patterns" on the battery of predictor

tests from which the performance estimates are determined. The addition

of the allocation constants to the corresponding performance estimates

will result in all individuals within such a subset being assigned to

the same job; i.e., the Ai 1,,...,m, are constant for the n*

individuals within the subset. Therefore,
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_ Uij

Least squarp.s performance estimates j derived under assumption of a

linear regression model are unbiased estimates of the population mean P

for the performance values, given the fixed predictor variables X; i.e.,

E EI ) =E(y x) =p.(y I X).

Expressed in terms of observations, with each subgroup representing a

given set of values for the predictor variables,

n* n*

and

or

fl* M n* m

as n*-

Since this result 'holds for any subgroup, it also holds in summing over

all individuals. Consequently, the equality in (1) is established.
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DESIGN OF THE SIMULATION EXPERIMENT

Assuming a model based on linear regression,

r - X; + Es =r

Y is a vector of random elements representing observations for an

individual on m performance measures; X is a vector of fixed variables

representing an individual set of scores on k predictor tests; B is a

k x m matrix of random variables which are least squares estimates of

the population regression coefficientsB; E is a random vector represent-

ing measurement error; and P - X A. Assume that E has the m variate

normal distribution with mean vector I and covariance matrix C.; then,

letting Y' and X represent matrices of n vector observations,

B (x)xf- X'Y and CE, = ' - X(X'X)" X)Y
U - M

are unbiased estimates of B and B.; B and CF are independent; each

column vector B3, j = 1,2,...,k, and, consequently, Y has an m variate

normal distribution.

In addition, if ELY) = 0,

COv() E(KYY)= Cr
* ^ J A AX A

Coy Y E(Y'Y)= EB'BX'XB) = E(Y'XcX'Xy-, Y)

cov (DY) = E(EY')_ E(YXB) = E(_,xYXX' ,') -- .

Then the 1 x (m + m) partitioned random vector [Y:YJ has expected mean vector

C2 0 and covariance matrix [Cr C;

Estimates of Cr and C are

5r - Y . CY
n

and

^ AC xcx~x)-'X,y - C
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Suppose : is to be any vector of observed values of the
A

random variables Yr- : 1 ]. Let V represent an observation in a

random sample drawn from the m + m variate normal distribution N(O, I);

i.e., V is a 1 x 2m vector of independent random normal deviates.

C CyxCxx

Let T a C = Y- - XYC
Ay C~ yCxx

and :i]asn-a% (2)

The Yi, for i 1, 2,...,n, are suitable values to represent least

squares performance estimates over which optimal assignment is to be

performed. The Yi, for the same i - 1,2,...,n, represent the measures

of actual performance which correspond to the predicted values. If

= I{,} is the n x m optimal allocation matrix constructed with

respect to the n x m performance estimates ={~t}; i.e.,

where A = {a j is any other allocation matrix which meets the required

restrictions. Then

Z= / , j
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and I -

provide suitable observations for the empirical test of the equality
in (1).

Two series of simulations were performed. In one series, the
allocation averages z and A were based on 100 independent samples, s,
each with 100 individuals, n. In the other series, the sample size was
1000 for a total of 10 samples. The same sequence of random numbers
was used to generate both series of allocation averages, however, so
that the total number of entities generated (10,000 - n x s 1 100 x 100
10 x 1000, even though subdivided to form different sized samples)
represented observations from the same individuals.

Observed values for CA are presented in Table 1. The value in each

diagonal element of Cyy, the criterion covariance matrix, was 1.00;

off-diagonal elements were set to 0.45. CXy, the covariance matrix

between predictor and criterion variables, was formed from Table A-I,
TRN 1 6 , row3 AE, EL, GM, NM, CL, GT and columns VE, AR, PA, MA, ACS,
SM, Al, ECI, CI, GIT. C X, the predictor covariance matrix, contained

1.00's in diagonal elements; in the off-diagonal elements were values
for the AE, EL, GM, MM, CL, Gr variables of Table A-I, TRN 126. -

The number of Job categories was chosen to be 6; For cach sample,
an n x 6 matrix of performance estimates was constructed from the second
six elements, the Y of the partitioned vectors CY 3,j, i = 1,2,...,n,

generated as shown in (2). Optimal assignment was then performed from
this matrix, with nearly uniform quotas specified for each job; i.e.,

6 6

qj 16 or 17 for n = q- 100 and qj 166 or 167 for n _qj - 000.j=1. j=0

The linear programming procedure used to obtain optimal assignment was
the Hungarian solution'to the transportation problem.

-gSorenson, Richard C. Optimal allocation of enlisted men--Full regres-

sion equations vs aptitude area scores. BESRL Technical Research Note
163. November 1965.

1'Katz, Aaron. Prediction of success in automatic data processing
programming course. BESRL Technical Research Note 126. October 1962.

-Kuhn, H. W. The Hungarian method for the assignment problem. Naval
Research Logistic Quarterly. a: 1, 1955.

-7-



Using the same optimal assignment solution and the same sample of
n partitioned vectors [ Yi] generated before assignment, allocation

A

averages based on performance estimates, the Yi, and allocation averages

based on criterion values, the Y.' were computed to yield experimental
observations ^ and z for sample t, t = 1,2,. s.

obe t'.'s.

RESULTS

ALLOCATION AVERAGES BASED ON PERFORMANCE MEASURES AND ESTIMATES

Mean allocation averages simulated over 100 samples of n = 100 and
10 samples of n = 1000 are presented in Table 2. The mean allocation
average over s samples for performance estimates is

a s n m

= - t= ; it

and the mean allocation average over s samples for performance measures is

s s Li M
/z'V Yijt .t

The null hypothesis of interest is: allocation averages based on
performance estimates and measures of actual performance are equal; i.e.,

H 0 E( E; )

* and are random variables which are estimates of the population
parameter t. Corresponding observed values are 4. and z..
Under Ho ,

[Var ( 9.) + Var - ov(

is distributed as t with. s - 1 degrees of freedom. The decision rule
adopted at the .05 level of significance is: Reject H if the observedA0

t z t0 (s-1); accept H otherwise. For z. and z. based on 100 samples

of n = 100, observed t = 0.12< t (99) = 1.98. Therefore, accept H
.05 0A

For z. and z. based on 10 samples of n -1000, observed t = 0.33<

t 0 5 (9) - 2.26. Therefore, accept H.
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The empirical results based on 100 samples of 100 observations and
on 10 samples of 1000 observations are consis 5ent with the equality in
(1) proved by Brogden for an infinite number'observation-

DISTRIBUTIONS OF MEASUREMENT ERROR

The question of bias in allocation averages based on least squares
performance estimates after optimal assignment can be rephrased in terms
of distributions of measurement error. In previous sections, two kinds
of allocation averages were computed after optimal assignment. Comparison
of measures of sample performance obtained before and after optimal assign-
ment are presented below:

Specifically, the null hypothesis to be tested was that mean differ-
ences between performance values and least squares estimates of perform-
ance values are the same both before and after allocation. Since
YiJ - = iJ this hypothesis is equivalent to determining whether

bias is introduced into the distribution of the error components as a
result of optimal assignment.

The measurement error frequency distributions before and after
assignment are presented in Tables 3 and 4. In Table 3, the error
terms for samples of 100 individuals are summarized over the 100 samples.
Table 4 is a summary of the error distributions for 10 samples of 1000
individuals.

Statistical tests were based on the mean errors computed, before
assignment, over all jobs and all individuals within a sample and, after
assignment, over all jobs to which individuals were assigned. The
observed grand mean basad on all samples of n = 100 was .0026 before
allocation and -.0007 after allocation; corresponding values for samples
of n = 1000 was .0022 before allocation and -.0020 after allocation.
Under the null hypothesis of no mean differences, letting eb . and e.

represent mean errors obtained before and after allocation, respectively,

eb .* -e
b a

*[Var(e b.) + Var(e a) 2 dciv (e b e a.)]

is distributed as t with s - 1 degrees of freedom. Note that, as in the
previous section, the test statistic takes into account dependence between

the means.

At the .05 level of significance, the decision rule is to reject H 0

if the observed t t. 0 (s-1); accept H otherwise. For the mean errors

-9-



based on 100 samples of n 1 100, observed t - 0.12 < t.0 5(99) - 1.98.

Therefore, accept H 0 For the mean errors based on 10 samples of

n - 1000, observed t 0.33 <.t.05(9) - 2.26. Therefore, accept H.6

Thus, no evidence was observed in the data for reproducible change

in the distributions of measurement error as a function of optimal
allocation, either for samples with n - 100 or n = 1000. This result
is, of course, not surprising. The expected value of both performance
values and estimates of performance values is zero before assignment
and therefore the expected value of the differences will be zero. The
null hypothesis of no mean differences between performance values and
estimates after optimal assignment having been accepted, all means
examined in the present section should be zero, and significant differ-
ences would not be expected.

OPTIMAL ALLOCATION AS A FUNCTION OF SAMPLE. SIZE

The main purpose of the study was to examine in detail any differ-
ences which might occur in allocation averages as a function of number
of observations. To do this, allocation averages 4 and z were based on
solutions for optimal assignment computed over samples of n = 100. At
the same time, allocation averages were obtained which were based on
the same 10,000 entities but differed because each optimal solution was
computed over only 1000 men.

It is often of practical interest, especially when it is important
to conserve computer space, whether the allocation average based on an
optimal assignment solution computed over a total sample of n individuals
will be greater than the mean of k allocation averages computed from the
same sample divided into k groups of n/k individuals. It could be con-
jectured that sample performance will be appreciably increased if the
size of the sample on which optimization is based is increased. :Experi-
mental results relating to this hypothesis were incidentally available,
since they were required for the main purpose of the study.

As shown in Table 2, observed mean allocation averages based on
samples of n - 1000 tended to be higher than averages obtained from the
100-individual samples. It was not possible to draw consistent con-
clusions, however, using the t-test for correlated means as a statistical
criterion. When both the solution for optimal assignment and the alloca-
tion average ware based on least squares performance estimates, the mean
for samples of n - 1000 (z. - .3056) was significantly greater than the
mean for samples of n - 100 (Z. - .3019) at the .01 level; the observed
t was 15.35, well over the critical value of 3.25 for 9 degrees of
freedom. On the other hand, with the solution for optimal assignment
being based on performance estimates but with the allocation average
computed from criterion values, the mean-for samples of n - 1000
(z. .3076) was not significantly greater than the mean for samples of

-10-



n - 100 (z. .3026). The critical value at the .05 level for 9 degrees
of freedom is 2.26, which is higher than the observed t of 1.83.

SUMMARY

In a series of simulation experiments, optimal assignment was per-
formed with respect to least- squares performance estimates for finite
samples. Two measures of allocation averages, one based on the least-
squares performance estimates and the other on actual performance values,
did not differ in statistical significance. Such results indicate lack
of bias in either measure of optimal assignment and are consistent with
Brogden's theoretical proof of equality of the two measures for infinite
samples.
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Table 2

ALLOCATION AVERAGES BASED ON PERFORMANCE MEASURES

100 Samples, N - 100 10 Samples, A//o, O

Performance: Performance:
Estimates Measures Estimates Measures

By Job Average S.D. Average S.D. Average S.D. Average S.D.

1 -.2811 .4347 -.2803 .9919 -.2909 .4286 -.2937 .9892

2 -.2105 .6136 .2062 .9538 .2070 .6103 .1932 -9566

3 .2147 .5914 .2189 .9056 .2188 .5911 .2306 .8923

4 .5697 .6166 .5734 .9043 .5676 .6121 .5742 .9025

5 .7867 .6379 .8064 .8451 .7942 .6392 .8062 .8508

6 .3414 .6044 .3211 .9121 .3405 .5958 .3385 .8849

Combined .3019 .5863 .3026 .9207 .3056 .5836 .3076 .9140

R.
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Table 3

DISTRIBUTIONS OF MEASUREMENT ERROR BEFORE AND AFTER ASSIGNMENT
FOR 100 SAMPLES OF 100 INDIVIDUALS

Interval Midpoints
Total

-3.5 -2.5 -1.5 --5 -5 1.5 2.5 3.5 Frequency Mean S.D.

Measurement Errors before Assignment

Job 1 2 107 1153 3754 3681 1196 107 0 10000 .0046 .8812

Job 2 0 26 786 4129 4159 869 31 0 10000 .0176 .7288

Job 3 0 33 752 4196 4219 776 24 0 10000 .0030 .7126

Job 4 0 15 666 4317 4360 629 13 0 10000 -.0028 .6633

Job 5 0 1 442 4626 4561 368 2 0 10000 -.0118 .5694

Job 6 0 19 722 4307 4157 767 28 0 10000 .0051 .6996

n = 60000

Grand Mean = .0026

Measurement Errors after Assignment

Job 1 1 18 198 632 631 200 20 0 1700 -.0008 .8840

Job 2 0 6 148 696 698 149 3 0 1700 .0043 .7386

Job 3 0 4 132 701 740 116 7 0 170b -.0042 .6987

Job 4 0 3 113 746 732 106 0 0 1700 -.0036 .6611

Job 5 0 0 77 731 738 54 0 0 1600 -.0197 .5773

Job 6 0 2 111 686 671 128 2 0 1600 .0196 .6933

n 10000

Grand Mean = -.0044
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Table 4

DISTRIBUTIONS OF MEASUREMENT ERROR BEFORE AND AFTER ASSIGNMENT

FOR 10 SAMPLES OF 1000 INDIVIDUALS

Interval Midpoints Total

-3-5 -2.5 -1.5 -. 5 .5 1.5 2.5 3.0 Frequency Mean S.D.

Measurement Errors before Assignment

Job 1 2 107 1153 3754 3681 1196 107 0 10000 .0046 .8812

Job 2. 0 26 786 4129 4159 869 31 0 10000 .0176 .7288

Job 3 0 33 752 4196 4219 776 24 0 10000 .0030 .7127

job 4 0 15 .666 4317 4360 629 13 0 10000 -.0028 .6633

Job 5 0 1 442 4626 4561 368 2 0 10000 -.0118 .5693

Job 6 0 19 722 4307 4147 777 28 0 10000 .0022 .6997

n = 60000

Grand: Mean - .0022
S.D. = .7152

Measurement Errors after Assignment

Job 1 1 18 192 619 624 196 20 0 1670 .0028 .8832

Job 2 0 7 133 692 677 157 4 0 1670 .0138 -7398

Job 3 0 4 129 711 704 115 7 0 1670 -.0118 .7003

Job 4 0 3 108 744 714 101 0 0 1670 -.0065 .6576

Job 5 0 0 78 754 768 60 0 0 1660 -.0120 .5783

Job 6 0 2 111 743 680 123 1 0 1660 .0020 .6781

n - 10000

Grand: Mean - .0020
S.D. - .7107
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